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Abstract

The controlled motion of a rigid inhomogeneous cylinder over a rough horizontal plane is considered. The control is provided
by controlled motion of internal masses. Mathematical models are constructed that correspond to rolling without loss of contact or
slippage. The conditions for the physical implementability of such a motion are derived. The case where the internal moving masses
from a rigid flywheel the centre of inertia of which lies on the axis of the cylinder is investigated in detail. A near-time-optimal
feedback control that enables the total energy to be changed in a required way is constructed on the basis of an asymptotic approach.
The main operating modes are simulated, namely, swinging up of the cylinder to a large angular amplitude, rotation with a prescribed
energy, deceleration of rolling to a complete stop, and oscillations and rotations in the neighbourhood of the separatrix.
© 2007 Elsevier Ltd. All rights reserved.

Among the classical models of systems considered in mechanics and physics, oscillating and rotating systems, the
simplest of which is a simple, or physical pendulum, play an important role. These models enable one to investigate
important properties and features of physical and engineering systems of different kinds, such as the presence and
stability of steady states, oscillating and rotating modes of motion, and the features of the transition from one to the
other, and methods for exciting or damping oscillations and rotations. An important aspect of such investigation is the
study of the possibility of controlling oscillations and rotations and of constructing specific control laws which enable
the system to be brought to the required state, subject to constraints accounted the physical features of the system (for
example, the nature of the constraints – bilateral or unilateral) or by the operational life of the control system and drives.

A large number of publications have been devoted to the control of oscillating and rotating systems. Asymptotic
methods have been proposed and developed for solving optimal control problems for oscillating the systems equations
of motion of which involve a small parameter.1,2 These methods are based on Pontryagin’s maximum principle3

combined with the Krylov–Bogolyubov averaging method.4,5 Using the averaging method, a large number of specific
control problems have been solved for non-linear pendulum-type systems. The moment of forces applied to the fixed
axis of rotation of the pendulum, the force applied to the moving massive suspension point or the velocity of the
suspension point are used as the control variable. A wide class of problems of controlling the displacement of linear
pendulum-type systems, having important engineering applications, for example, in the design of automatic control
systems for cranes and container loaders, have been considered.1
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Problems of the optimal parametric control of a pendulum with a moving point body inside it have been solved.6,7

The point body can move along a straight line, passing through the suspension point and the centre of mass of the
pendulum; the control variable is the displacement6 or velocity7 of the internal mass with respect to the pendulum,
the range of variation of which is bounded. The optimal control of the motion of a plane-parallel bifilar pendulum due
to displacement of an internal point body has been considered.8 The components of the velocity or acceleration of
motion of an internal point mass relative to the body of the pendulum are the controls. The results obtained enable the
potential for exciting or damping the vibrations in swing-type mechanisms to be clarified.

The control and stabilization of a physical pendulum suspended on a fixed horizontal axis, with a massive flywheel
inside it was investigated in Ref. 9. The flywheel can rotate about a horizontal axis, fixed with respect to the pendulum,
and is set in motion by an electric drive. A control law was constructed for the electric motor of the drive, according to
which the pendulum is brought from any initial state to the upper unstable equilibrium position and is stabilized in this
position. Modes for controlling the rotations of the pendulum using the flywheel were also examined. The theoretical
results were confirmed by experiments. The control method is in fact parametric, since, like the systems mentioned
above,6–8 the pendulum is controlled by moving a body inside it.

Below we consider the controlled rolling over a horizontal plane of a rigid cylinder with a flywheel inside it. The
centre of mass of the cylinder in the general case does not lie on its geometric axis (the cylinder is out-of-balance),
but the centre of mass of the flywheel lies on this axis. Control is provided by changing the angular acceleration of
the flywheel with respect to the cylinder. The system can be classified as an oscillational-rotational one, extends the
well-known model of controlled motion of a pendulum, and by its nature is similar to that examined earlier.9 In both
cases the carrying body (the pendulum) is controlled by controlling the rotation of the flywheel inside it. Unlike the
case of a fixed axis of the pendulum suspension,9 here the line of contact of the wheel with the supporting plane
is moving, as the wheel is rolling over a plane. Furthermore, the rolling conditions of the cylinder over the plane
represent a unilateral constraint, on account of which it is necessary to impose additional conditions, which enable the
non-violation of this constraint to be monitored.

The results obtained are of interest from the viewpoint of the theory of the control of oscillational-rotational systems,
and also in relation to possible applications in robotics and the mechanics of transport mechanisms, in particular,
monocycles.10,11

1. Initial mechanical model

We will consider the plane-parallel motion (rolling) of an inhomogeneous perfectly rigid circular cylinder over a
rough horizontal plane. Inside the cylinder there is a set of point masses that can move with respect to it in a controlled
way. In the plane perpendicular to the axis of the cylinder and passing through its centre of mass, we will introduce a
fixed (inertial) system of coordinates XY with its centre at the point O and a mobile system of coordinates ��, rigidly
connected to the cylinder, with its centre at the point o on the axis of the cylinder (Fig. 1). The X axis is selected as the
line of intersection of the coordinate plane XY with the horizontal plane along which the cylinder is rolling, and the Y
axis is directed vertically upwards. The axis � passes through the centre of mass C of the cylinder and is directed from
point C to point o (Fig. 1).

Fig. 1.
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We will assume that, during the motion, no slippage of the cylinder and/or loss of contact with the plane occurs. In
this case the position of the cylinder is characterized by a single variable (generalized coordinate) x – the coordinate
of the projection of the point o onto the X axis, or the angle � of rotation of the cylinder about its axis. We will define
� as the angle between the � and X axes, considering the counter clockwise rotation of the � axis to be positive. The
variables x and � are related by the equation

(1.1)

where R is the radius of the cylinder, and x0 and �0 are constants determined by the choice of the reference points for
the corresponding variables. Without loss of generality, it is possible to assume that x0 = 0 and �0 = 0. The position of
a point mass mi (i = 1, . . ., n) with respect to the cylinder is described by the Cartesian coordinates �i and �i in the ��
system. Below, the functions �i(t) and �i(t) are considered to be specified and sufficiently smooth.

If the angle � is selected as the generalized coordinate, the expressions for the kinetic energy TM and potential
energy UM of the cylinder have the form

(1.2)

where JC is the moment of inertia of the cylinder about the axis passing through the centre of mass C parallel to the
generatrix, M is the mass of the cylinder, l is the distance from the axis of the cylinder to its centre of mass and g is the
acceleration due to gravity.

The kinetic energy Tm and the potential energy Um of the set of point masses mi are equal to the sums of the
corresponding energies Tmi and Umi of the individual points

(1.3)

If the motion of the points mi relative to the cylinder is specified by sufficiently smooth functions �i(t) and �i(t), the
motion of the cylinder is described by Lagrange’s equation

(1.4)

In deriving the equations of motion, relation (1.1), implying that rolling of the cylinder over the plane occurs without
loss of contact or slippage, was postulated. In fact satisfaction of this condition is ensured by the physical forces applied
on the contact line – the normal reaction of the supporting surface N, directed along the Y axis, and the friction force
F directed along the X axis of the inertial reference system XY. The normal reaction should be non-negative, since
the supporting surface can act on the cylinder only towards the latter. We will assume that dry friction, which obeys
Coulomb’s law, acts between the cylinder and the supporting surface. In this case, the magnitude of the friction force
cannot exceed the magnitude of the normal reaction multiplied by the coefficient of friction. Thus, the complete set of
conditions of motion of the cylinder over the plane without loss of contact or slippage, taking the physical features of
the active forces into account, has the form

(1.5)
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where x and y are the X and Y coordinates of the point o of intersection of the cylinder with the XY coordinate plane,
and k is the coefficient of friction. Note that the inequality N ≥ 0 stems from the inequality |F| ≤ kN, and hence the first
inequality in system (1.5) can be omitted.

In the case of motion without loss of contact or slippage, the forces N and F are defined by the expressions

(1.6)

(1.7)

where m is the sum of the masses of the point masses mi.
Expressions (1.6) and (1.7) are derived on the basis of the centre of mass principle for a mechanical system. The

current coordinates XC and YC of the centre of mass of the system under consideration in the fixed reference system
XY are defined by the expressions

(1.8)

Of the external forces, the force of gravity, equal to (M + m)g and directed vertically downwards, and the normal
reaction N act on the system along the Y axis, and only the friction force F acts on the system along the X axis.
Accordingly, the equations of motion of the centre of mass have the form

(1.9)

Eqs. (1.6) and (1.7) follow from relations (1.8) and (1.9).
From the equation of motion (1.4) we can express the generalized acceleration �̈ in terms of the phase variables (the

generalized coordinate � and the generalized velocity �̇) and substitute the expressions obtained into relations (1.6)
and (1.7). As a result, we obtain the normal reaction and the friction force as functions of the phase variables of the
system and time.

Motion of the cylinder over the plane occurs without loss of contact or slippage if, and only if, at any instant of time
t, conditions (1.5) satisfied.

From relations (1.2)–(1.4) it can be seen that the functions �i(t), �̇i(t), �̈i(t), �i(t), �̇i(t) and �̈i(t), which characterize
the motion of points mi relative to the cylinder, occur in the equation of motion (1.4). By controlling the motion of
these points, it is possible to control the motion of the cylinder. In the formulation of control problems, it is reasonable
to take �̈i(t) and �̈i(t) as the control variables.

In the special case when the coordinates �i and �i are constant, the system under consideration comprises a rigid
cylinder with a corresponding mass distribution. Such a system, depending on the initial conditions, performs vibrational
or rotational motions and can be treated as a generalized physical pendulum whose motion is described by an equation
of the form

(1.10)
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where J∗(�) is the moment of inertia of the system about the instantaneous contact line (the generatrix of the cylinder),
U∗(�) is the potential energy of the system in the gravitational field, and the prime denotes differentiation with respect
to the variable �. System (1.10) has the energy integral

and allows of complete integration in terms of elliptic functions.
The equation of motion (1.4), with an arbitrary number of point masses moving inside the cylinder, and with arbitrary

functions �(t) and �(t), is rather cumbersome and complex for solving control problems for such systems. It is therefore
reasonable to impose constraints on the motion of these points in order to simplify the equation of motion.

2. Simplified versions of the model

2.1. Specified trajectories of motion of the point masses

In many applied problems it is reasonable to assume that the point masses mi move relative to the cylinder along
prescribed trajectories. Mechanically, such motion can be ensured, for example, by guides of appropriate shape. The
trajectories of motion in the �� system of coordinates can be represented in the form of curves specified parametrically
as follows:

(2.1)

where �i(si) and �i(si) are specified functions defining the shape of the curve, and si is a parameter of the curve, for
example, its length, that is being measured from some fixed point. Characterizing the position of a point mi on the
corresponding trajectory by the parameter si, it is possible to represent the motion of this point relative to the cylinder
by the functions �i(si(t)) and �i(si(t)), where si(t) represents the variation of the parameter of the curve with time during
the motion of the point. The derivatives of the functions si(t) can be regarded as control variables.

Some of the simplest examples of curves (2.1), which at the same time are of importance in research and applied
respects, are circles with a common centre at the point o on the axis of the cylinder. In this case, Eq. (2.1) are defined
specifically as follows:

(2.2)

where �i represents the radii of the circles, and �i is the angle between the radius vector of the point on the corresponding
circle and the � axis. The angular variables �i in expressions (2.2) play the role of the parameters si in relations (2.1).

Substituting expressions (2.2) into relations (1.3), we obtain comparatively simple expressions for the kinetic and
potential energies of the point masses

(2.3)

Lagrange’s equation (1.4) with this simplification still remains cumbersome and complex for a qualitative analysis
and the solution of control problems. In solving a number of control problems (including the optimal one) for systems
of this kind, it is reasonable to take the functions �̈i as control variables, assuming them to be piecewise continuous.
Then the variables �̇i and �i are found by integrating the control function, and the function �i(t) will be continuously
differentiable, and �̇i(t) will be piecewise differentiable, which corresponds to physical concepts concerning the nature
of the variation of the coordinate and velocity of a point body. At the same time, the variables �i and �̇i for a controlled
system treated in this way are phase variables, and, if there are many point masses, it is necessary to solve a control
problem with a large number of phase variables, which is rather difficult.
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2.2. The dynamic balance of internal moving masses

Let the number of internal moving masses mi be even (n = 2j*) and let the point masses with numbers j and j + j*
(j = 1, . . ., j*) have identical masses and, at each instant of time, be symmetrical about the centre o. In this case we have

(2.4)

If the conditions imposed are satisfied, the centre of mass of the system of point masses mi lies on the axis of the
cylinder (at point o). Therefore, in this case it is appropriate to call the system of internal moving masses dynamically
balanced.

Expressions (2.4) do not contain linear terms in �j, �̇j and �j, �̇j . Furthermore, there is no dependence on �, which
considerably simplifies the equations of controlled motion. If, furthermore, the points with numbers j and j + j* (j = 1,
. . ., j*) move synchronously in circles, expression (2.4) reduces to the form

(2.5)

where �j and �j are the parameters of the circle, defined by relations (2.2).
When the system of internal masses is dynamically balanced and the corresponding point masses move in circles,

the equation of motion (1.4) acquires the comparatively simple obvious form

(2.6)

where Jm is the total moment of inertia of the point masses mj about the axis of the cylinder, and J∗(�) is the overall
moment of inertia of the cylinder with moving masses about the instantaneous axis of rotation of the cylinder (the
generatrix along which the cylinder touches the plane on which rolling occurs.

Let all the point masses mi move in their circles with the same angular velocity, i.e. �̇j ≡ �̇ for all j = 1, . . ., j*. In
such a case, the moving masses form a rigid body (flywheel) rotating relative to the cylinder about the axis of the latter.
Here, the equation of motion (2.6) is simplified even further and takes the form

(2.7)

Expressions (1.6) and (1.7) for the normal component N and the tangential component F of the reaction of the
supporting surface in the case under consideration have the form

(2.8)

(2.9)

In accordance with relations (1.5), the magnitudes of N and F must satisfy the conditions N ≥ 0 and |F| ≤ kN, where
k is the coefficient of friction. If there is no imbalance of the cylinder (l = 0), the first inequality is always satisfied, and
the second inequality is satisfied for a sufficiently small magnitude of the relative angular acceleration of the pendulum
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or a sufficiently high coefficient of friction, namely, if JmJ−1∗ R|�̈| ≤ kg. If there is an imbalance, both inequalities
may be violated for sufficiently large |�̇|(��̇2 g) or |�̈|(JmJ−1∗ l|�̈| g). In the space of the variables l, �̇ and �̈ there is a
region in which inequalities (1.5) are satisfied for any �.

When there is no imbalance (l = 0), we have the equation

which expresses the conservation of the angular momentum of the system about the line of contact of the cylinder with
the plane. If the entire system was at rest (�̇ = 0, �̇ = 0) at the initial instant of time, the constant on the right-hand
side of this equation is equal to zero. In this case, for the cylinder to roll in a particular direction, the flywheel must the
whole time rotate relative to the cylinder in the opposite direction to cylinder rotation during rolling, i.e. the magnitude
of �̇ must be a constant in sign and not vanish. Note that the acceleration of the cylinder to any velocity is possible for
an arbitrarily small value of |�̈|, which makes it possible to avoid slippage during acceleration. If l > 0, acceleration of
the cylinder from the stable equilibrium state (when the centre of mass of the cylinder lies on a vertical line passing
through the axis of the cylinder, below the latter) is prevented by the moment of the forces of gravity −Mgl sin � and
the moment of the centrifugal forces of inertia −MlR�̇2 sin �. This can be seen from Eq. (2.7). Nonetheless, in this
case, also, acceleration of the cylinder is possible for an arbitrarily small value of |�̈| due to resonance swinging of the
system. To avoid violations of the conditions for rolling without loss of contact and slippage (1.5), the magnitude of
the imbalance l and the magnitude of the relative angular acceleration of the flywheel �̈ must be sufficiently small.

As can be seen from relation (2.7), when l > 0 and �̈ = 0, the cylinder on the plane has a denumerable set of stable
equilibrium positions �e = 2�p (xe = −2R�p) (p = 0, ± 1, . . .), which may be of interest for applications.

Below, optimal control problems are solved for system (2.7), which seems to be the simplest system of the class
being considered. The quantity �̈ is used as the control variable. The performance index in such problems is normally
the time needed to bring the system to the prescribed phase state or the total mechanical energy at the instant the
control process is completed. By virtue of the above, to satisfy the conditions of motion of the cylinder without loss
of contact with the plane or slippage, the value of |�̈| must be sufficiently small. We will therefore consider |�̈| to
be an asymptotically small quantity, which will enable us to use effective asymptotic methods for the approximate
construction of optimal motions.

3. The construction of a standard system of equations of the controlled rolling of a cylinder

Assuming M �= 0 and l �= 0, we will introduce the following dimensionless variables and parameters

(3.1)

and represent Eq. (2.7) in the form

(3.2)

and the conditions of rolling without loss of contact or slippage (1.5), taking expressions (2.8) and (2.9) for N and F
into account, in the form

(3.3)
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The prime denotes differentiation with respect to the dimensionless time 	, and 
 is the maximum admissible value of
the magnitude of the angular acceleration of the flywheel �̈ (a control system parameter). The parameter � characterizes
the frequency �e = �/(

√
1 − 2λ) of small oscillations of the cylinder in the neighbourhood of the equilibrium positions

�e = 0, ± 2�, . . . when there is no control.
The dimensionless parameter � lies in the range 0 < � < ½. To prove this inequality, we will represent the overall

moment of inertia of the system about the instantaneous line of contact of the cylinder with the plane, defined by the
second equation of system (2.6), in the form J∗(�) = J(1 − 2� cos �). The value of J∗(�) is positive for all �. The
inequality � < ½ follows from the relation J∗(0) > 0.

If M = 0 or l = 0, replacement of the variables (3.1) is inapplicable due to the fact that the parameter �, which occurs
in the formula relating the initial (dimensional) time t to the dimensionless time 	, vanishes. Therefore, the cases
indicated require a separate examination. From relations (2.6) and (2.7) it follows that, when M = 0 or l = 0, Eq. (2.7)
acquires the form

(3.4)

We have taken into account the fact that, when the mass of the cylinder M becomes zero, its moment of inertia JC also
becomes zero.

Formally, Eq. (3.4) is identical with the equation of motion of a point mass along a horizontal straight line under
the action of the control force. The coordinate of the point mass is identified with the variable �, the mass is identified
with the constant coefficient J* and the control force is identified with the quantity −Jm�̈. The control of this system
has been investigated in great detail and is not considered in the present paper.

Note that, if in Eq. (3.2) it is assumed that � = 0, an equation will be obtained that formally identical with the equation
of motion of a pendulum (simple or physical) with a fixed horizontal axis of rotation under the action of a control
moment of forces −�u applied to this axis. In terms of the initial dimensional variables, this case corresponds to R = 0
with l �= 0. Such a situation is physically possible since, in deriving expressions (1.2) and (1.3) for the kinetic energy
and potential energy of the system, it is important only that the surface of the body, with moving masses inside, rolling
over the plane, cylindrical, while the shape of the body itself and the distribution of masses inside it are unimportant.
Therefore, the radius of the rolling cylinder R and the distance from the axis of this cylinder to the centre of mass of the
body carrying the moving masses are in no way related. Thus, the system considered extends the model of a pendulum
controlled by the moment of forces applied to its axis of rotation.

When � = 0 or u = 0, there is no control. In this case, system (3.2) has a first integral (energy the integral)

(3.5)

From the physical viewpoint, the quantity E is the total mechanical energy of the unbalanced cylinder with a flywheel
rigidly fixed to it, i.e. the quantity E does not take into account the components of the kinetic energy related to rotation
of the flywheel with respect to the cylinder. If E < 2, the system performs periodic oscillations about the position of
stable equilibrium, with the amplitude �∗ = arccos(1 − E). If E > 2, the cylinder rolls (rotates) with a periodically
varying velocity. The case when E = 2 corresponds to the separatrix.

The oscillation period �υ and the rotation period �r are determined in a standard way for a conservative system1,2

(3.6)
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(3.7)

Integrals of the form Iυ(�∗, ) and Ir(�, ) are not given in the most comprehensive reference books and require
separate calculations. They can be expressed in terms of a complete elliptic integral of the third kind �((�/2), p, �).12

After a non-trivial change of the argument � and lengthy calculations, the function Iυ(�∗, ) (3.6) can be represented
in the form

(3.8)

Note that the coefficient of the integral �((�/2), p, �) in Eq. (3.8) approaches zero as  → 1. However, in this
case the modulus � and the parameter p of the integral approach unity from below, which leads to its divergence
(� (1 − )−1). At the same time, the right-hand side of Eq. (3.8) has a finite limit as  → 1, which is equal to integral
(3.6) for  = 1:

(3.9)

It follows from this that Iυ(�∗, 1) → 0 as �∗ → 0. It can be established that Iυ → ∞ when �∗ → �. This property
of the unboundedness of the oscillation period �υ is characteristic of motions close to the separatrix (E� 2). On
the other hand, for small oscillation amplitudes (�* « 1, E « 1), for the integral Iυ and the period �υ, we obtain the
approximate expressions

(3.10)

These quantities are independent of �∗ (or E); the quantity �υ in system (3.10) is identical with the period of small
oscillations of the cylinder described by linearized equation (3.2) with � = 0.

When  → 0, the parameter p approaches zero and the complete elliptic integral of the third kind �((�/2), p, �)
becomes a complete elliptic integral of the first kind K(�).

The integral Ir(�, ), related to the rotation period �r, in expressions (3.7) also requires lengthy calculations. It can
be reduced to the form

(3.11)

As in expression (3.8) for Iυ, the coefficient of the integral �((�/2), p, �) in Eq. (3.11) approaches zero as  → 1
(� → (1/2)), and the integral itself increases without limit. However, when  → 1, the right-hand side of Eq. (3.11)
approaches a finite limit

(3.12)

In the general case 0 ≤  ≤ 1, the quantities Ir (3.11), (3.12) and �r (3.7) are unbounded as � → 1, which corresponds
to slow rotational motions close to the separatrix E� 2. For the period of rapid rotations (E » 1, � « 1), the following
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approximate expression applies

(3.13)

where E is the complete elliptic integral of the second kind. Note that, when  = 0, the parameter p vanishes, and
the integral �((�/2), p, �) becomes a complete elliptic integral of the first kind K(�) with an inherent property of
divergence as � → 1, i.e. as � → 1.

To describe the dynamics of system (3.2) when � > 0, it is convenient to proceed from the coordinate–velocity phase
variables (�, �′) to the energy–phase variables (E, �). The variable E is defined by relation (3.5) and varies as given
by the equation

(3.14)

which is obtained by differentiating expression (3.5) by virtue of Eq. (3.2). The function �′(E, �) is implicity defined
by relation (3.5). Solving this relation for �′, we obtain

(3.15)

The phase � is defined by the relation

(3.16)

where �0 is the value of the variable � when 	 = 0. Differentiating expression (3.16) with respect to 	, taking Eq. (3.14)
into account, we obtain

(3.17)

Expressing the variable � as a function of E and � with reference to relation (3.16), and substituting � = �(E, �)
into the right-hand sides of Eqs. (3.14) and (3.17), we obtain a closed system of differential equations for the variables
E and �. The right-hand sides of this system are 2�-periodic functions of �.

In the first approximation of the method of averaging,4,5 the phase � is found with an error O(1) on the time interval
	 ∼ �−1, since the slow variable (the energy E) is calculated with an error O(�) on this interval. Therefore, the term
with the coefficient � in Eq. (3.17) can be omitted without loss of accuracy, which considerably smiplifies the solution
of control problems for the mechanical system considered.

4. Near-optimal modes for controlling the energy of oscillations and rotation of an inhomogeneous cylinder

Let us consider optimal control problems for system (3.14), (3.17) in an asymptotically long time interval
(	 ∼ �−1).1,2

Problem 1. Maximization or minimization of the total energy at a prescribed instant of time. For the system (3.14),
(3.17) subject to the initial conditions

(4.1)

it is required to find the optimal control u = u0(E, �) which satisfies the constraint |u| ≤ 1 and minimizes (maximizes)
the energy E at a specified instant of time 	f = L�−1, i.e.

(4.2)
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Problem 2. Driving the system to a state with specified energy in the minimum time. It is required to find the optimal
control u = u0(E, �) which satisfies the constraint |u| ≤ 1 and which brings system (3.14), (3.17), subject to initial
conditions (4.1), to a state with energy E = Ef in the minimum time, i.e.

(4.3)

An approximate solution of these problems can be constructed using Pontryagin’s maximum principle,3 combined
with the method of averaging,4,5 which is used to solve the boundary value problem of the maximum principle.1,2 To
fix our ideas, we will dwell on Problem 2. Approximate (near-optimal) control is represented in a feedback form as
follows:

(4.4)

The control (4.4) is locally optimal, and it is this control that, at any instant of time, minimizes the rate of change
of the modulus of the difference between the actual value of the energy E and the final value Ef.

Note1,2 that, for Problem 1, the near-optimal control has the form u0 = ∓sign�′.
The symbol �′ in relation (4.4) should be understood as the function (3.15), where the quantity � is expressed in

terms of E and � in accordance with relation (3.16). Thus, the control (4.4) is a function of the variables E and �,
as required by the formulation of the optimal control problem. On the other hand, this control can be expressed as a
function of the initial variables � and �′ of system (3.2), which can be measured directly. For this it is necessary to
substitute expression (3.5) for E into Eq. (4.4).

The change in the variable E with an error O(�) on the time interval ∼�−1 is described by the equation obtained
after substituting the control (4.4) into relation (3.14) and averaging the latter over the phase �. The introduction of
the slow argument � = �	 makes it possible to reduce the averaged equation to the form (the dot denotes differentiation
with respect to �)

(4.5)

The dependence of the oscillation period �υ or rotation period �r on E and � is defined by expressions (3.6), (3.10)
or (3.7), (3.13).

The integrals in the expression for V(E, �) are evaluated analytically, and for the function V yield the expressions

(4.6)

The amplitude of the oscillations �∗ is given by the second formula of system (3.6); for E « 1, we have �∗ ≈ √
2E.

Equation (4.5) allows of the separation of variables, and its solution is expressed by the quadrature

(4.7)

The minimum slow time of variation of the energy from E0 to Ef is calculated from the formula

(4.8)

An analysis of the properties of function V indicates the complete controllability of the system in the oscillation
and rotation modes. When E « 1 and E » 1, we have the asymptotic form V

√
E, i.e. E ∼ �2. The control (4.4) is also
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applicable in the case of the evolution of the motion of the cylinder from the oscillation mode to the rotation mode.
Transition through the separatrix leads to an increase in the degree of error of the asymptotic solution: instead of
the estimate of O(�), we have the estimate O(� ln �−1), which is satisfactory from the viewpoint of applications for
sufficiently small � > 0.

5. Mathematical modelling of the controlled oscillations and rotations of an inhomogeneous cylinder with a
near-optimal control law

The near-optimal control (4.4), constructed in the feedback form, enables one to control system (3.2), continuously
measuring its phase variables � and �′ and calculating the energy E by means of formula (3.5). In this section, the
results of numerical simulation of the behaviour of the system under the given control law are presented and analysed.
The simulation involve the integrating the equation

(5.1)

with prescribed parameters �, � and Ef, and the initial conditions

(5.2)

Equation (5.1) was obtained by substituting the near-optimal control (4.4) into Eq. (3.2). The right-hand side of this
equation is a discontinuous function of the phase variables, and here the number of discontinuities along the trajectory
of motion can be asymptotically large (∼�−1). This fact considerably complicates the numerical simulation of Eq.
(5.1) using standard software. Therefore, it is reasonable to smooth the control function (4.4) on a set of discontinuities
(E − Ef)�′ = 0, thereby smoothing the right-hand side of Eq. (5.1).

When simulating the motions of the system, the results of which are presented below, the control (4.4) was
approximated by the function

(5.3)

where dE, d� and c are parameters of the approximation, dE and d� being positive. As all the approximation parameters
approach zero, the function u∗ [Eq. (5.3)] approaches the function u0 [Eq. (4.4) or Eq. (5.1)]. It is assumed that |c| ≤ d�.
This condition ensures that the constraint |u∗| ≤ 1, imposed on the control variable, is satisfied. The parameters dE

and d� are introduced to smooth the bang-bang function. The additional parameter c is introduced to ensure non-zero
control when �′ = 0, for example, at the start of motion from an equilibrium state. By appropriate choice of the sign of
c it is possible to control the direction of motion on the initial segment, and also on passing through the separatrix (at
near-zero velocity) in the case when E0 < 2 but Ef > 2. If c = 0, the direction of motion of the cylinder on passing through
the separatrix proves to be difficult to predict, especially for extremely small values of �. The specified energy Ef > 2 is
reached irrespective of the direction of rotation. Furthermore, in the case of the control (5.2) with c = 0, considerable
influence of rounding-off errors is observed when integrating the equation of motion (3.2) at the stage of the transition
from oscillations to rotations. This also leads to indeterminacy in the direction of rotation at the final stage of the
motion. For the deceleration process (when Ef < E0), it is possible to assume that c = 0 irrespective of the oscillatyion
or rotation mode.

Thus, when simulating, instead of Eq. (5.1), we integrated the equation

(5.4)

The input data for the simulation included the dimensionless parameters of the system �, � and � [see system (3.3)],
the coefficient of friction of the cylinder against the rough surface k, the initial energy E0 and the final energy Ef and
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also the approximating control parameters dE, d� and c. The initial conditions were specified as follows:

(5.5)

The first condition means that, in the initial state, the centre of mass of the cylinder occupies the lower position. The
initial velocity �′

0 was calculated by means of formula (3.15) for E = E0 and � = �0 = 0; to be specific, the right-hand
sign was taken with a plus sign.

The output data contained the functions �(	), �′(	), E(	), u∗(�(	), �′(	)), N*(	) and �(	) = |F∗(	)| − kN∗(	).
They characterize the dependence on the dimensionless time 	 of the dimensionless values of the angle of rotation
of the cylinder, its angular velocity, energy E, control (5.5), the normal reaction of the plane on the cylinder and the
difference between the modulus of the friction force of the cylinder against the plane and the normal reaction multiplied
by the coefficient of friction. The quantities N* and F* are defined by formulae (3.3). In the calculations it was assumed
that

The values of �, �, E0 and Ef underwent changes. Graphs of the functions mentioned are presented in Figs. 2–5 for
four sets of initial data.

The curves in Figs. 2–4 correspond to the values � = 0.05, � = 0.1 and E0 and to different values of Ef: Ef = 1.5 (Fig. 2),
Ef = 5 (Fig. 3), and Ef = 2–5.576 × 10−6 (Fig. 4). The version with Ef = 1.5 corresponds to swinging up the cylinder
from stable equilibrium to the angular amplitude �0 = 120◦, calculated by means of the formula �0 = arccos(1 − E)
for E = 1.5. The required time 	f ≈ 27.6 corresponds to formula (4.8). When Ef = 5, the cylinder is driven from a
state of stable equilibrium into rotation. The next-minimum time of operation 	f ≈ 38 agrees with expression (4.8).

Fig. 2.
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Fig. 3.

Fig. 4.



L.D. Akulenko et al. / Journal of Applied Mathematics and Mechanics 70 (2006) 843–858 857

Fig. 5.

When Ef = 2–5.576 × 10−6, the next-minimum time of operation 	f ≈ 33. This case corresponds to the transfer of
the cylinder from stable equilibrium, characterized by the value � = 0, to unstable equilibrium with � = �(mod2�)
or � = –�(mod2�). On the phase plane ��′ this equilibrium is represented by the point (�, 0) or (−�, 0) on the
separatrix separating the regions of oscillational and rotational motions. For the phase states lying on the separatrix,
Ef = 2 (see Section 3). However, with this value of the final energy, on account of computing errors and instability of
the equilibrium into which it is required to bring the system, the simulation results do not indicate any marked “stay”
of the cylinder in the unstable equilibrium position. To demonstrate the effect of the stay, an Ef value close to Ef = 2
was selected experimentally. These experiments showed the very high sensitivity of the simulation of the effect of stay
in the unstable equilibrium position to a variation in the value of the energy and to the choice of the step of numerical
integration of the equation of motion.

Fig. 5 presents curves for the initial data

In this case, deceleration of the initial rotation of the cylinder to a complete stop at a stable equilibrium position
occurs. The approximate time of deceleration 	f ≈ 24.

For all versions of the simulation, the curve �(	) lies below the abscissa axis, which indicates that conditions
(3.3) are satisfied, thereby guaranteeing motion of the cylinder over the plane without loss of contact or slippage.
Accordingly, the curve N*(	) lies above the abscissa axis.
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